Papers

A tabular view of curated papers organized by the reprogrammability taxonomy dimensions.

Paper Configuration ($\lambda$) Location ($\ell$) Operator ($\tau$) Alignment ($\omega$) Venue
Adversarial Reprogramming of Neural Networks Elsayed et al. (2019) Learnable Input ($\mathcal{X}_S$) Additive (AD) Statistical (SA) ICLR
Adversarial Reprogramming of Text Classification Neural Networks Neekhara et al. (2019) Learnable Embedding ($\mathcal{E}$) Parametric (PR) Statistical (SA) / Linear (LA) EMNLP/IJCNLP
Language Models are Few-Shot Learners BROWN et al. (2020) Fixed input-space Concatenative (CO) Identity (ID) NeurIPS
Reprogramming Language Models for Molecular Representation Learning Vinod et al. (2020) Learnable Input ($\mathcal{X}_S$) Parametric (PR) Rule-based (RA) NeurIPS Workshop
Learning how to ask: Querying LMs with mixtures of soft prompts Qin et al. (2021) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) NAACL
PTR: Prompt Tuning with Rules for Text Classification HAN et al. (2021) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Rule-based (RA) arXiv preprint (cs.CL)
Prefix-Tuning: Optimizing Continuous Prompts for Generation Li et al. (2021) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) ACL/IJCNLP
The Power of Scale for Parameter-Efficient Prompt Tuning Lester et al. (2021) Learnable Input ($\mathcal{X}_S$) Additive (AD) Identity (ID) EMNLP
Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources Tsai et al. (2021) Learnable input-layers statistical / linear Identity (ID) ICML
Voice2series: Reprogramming acoustic models for time series classification Yang et al. (2021) Learnable Input ($\mathcal{X}_S$) Parametric (PR) Statistical (SA) ICML
WARP: Word-level Adversarial ReProgramming Hambardzumyan et al. (2021) Learnable Input ($\mathcal{X}_S$) Concatenative (CO) Linear (LA) ACL / ACL-IJCNLP
Adversarial Reprogramming Revisited Englert et al. (2022) Learnable Input ($\mathcal{X}_S$) Additive (AD) Statistical (SA) NeurIPS
An Explanation of In-context Learning as Implicit Bayesian Inference Xie et al. (2022) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) ICLR
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models Wei et al. (2022) Fixed input-space Concatenative (CO) Identity (ID) NeurIPS
Conditional Prompt Learning for Vision-Language Models Zhou et al. (2022) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) / Linear (LA) CVPR
Cross-modal Adversarial Reprogramming Neekhara et al. (2022) Learnable Input ($\mathcal{X}_S$) Additive (AD) Linear (LA) WACV
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners ZHANG et al. (2022) Fixed Embedding ($\mathcal{E}$) Concatenative (CO) Statistical (SA) ICLR
Exploring Visual Prompts for Adapting Large-Scale Models Bahng et al. (2022) Learnable Input ($\mathcal{X}_S$) Additive (AD) Statistical (SA) arXiv
In-context Learning and Induction Heads OLSSON et al. (2022) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) arXiv
Learning To Retrieve Prompts for In-Context Learning Rubin et al. (2022) Fixed input-space Concatenative (CO) Identity (ID) NAACL
Learning to Prompt for Vision-Language Models Zhou et al. (2022) Learnable Input ($\mathcal{X}_S$) Additive (AD) Identity (ID) IJCV
Learning to Prompt for Vision-Language Models Zhou et al. (2022) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Linear (LA) IJCV
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models Zhou et al. (2022) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) ICLR
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks Liu et al. (2022) Learnable Hidden ($\mathcal{H}$) Concatenative (CO) Linear (LA) ACL
PPT: Pre-trained Prompt Tuning for Few-shot Learning GU et al. (2022) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Rule-based (RA) ACL
Rethinking the Role of Demonstrations: What Makes In-Context Learning Work? MIN et al. (2022) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Rule-based (RA) EMNLP
Spot: Better frozen model adaptation through soft prompt transfer Vu et al. (2022) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) ACL
Structured Prompting: Scaling In-Context Learning to 1,000 Examples HAO et al. (2022) Fixed Hidden ($\mathcal{H}$) Concatenative (CO) Identity (ID) arXiv
Unleashing the Power of Visual Prompting At the Pixel Level WU et al. (2022) Learnable Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) / Statistical (SA) arXiv
Visual Prompt Tuning JIA et al. (2022) Fixed Embedding ($\mathcal{E}$) / Hidden ($\mathcal{H}$) Concatenative (CO) Linear (LA) ECCV
Visual Prompting via Image Inpainting BAR et al. (2022) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) NeurIPS
A Simple Zero-shot Prompt Weighting Technique to Improve Prompt Ensembling in Text-Image Models ALLINGHAM et al. (2023) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) ICML
BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning OH et al. (2023) Learnable input-space Additive (AD) Rule-based (RA) CVPR
Decomposed Prompting: A Modular Approach for Solving Complex Tasks Khot et al. (2023) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) ICLR
Deep Graph Reprogramming JING et al. (2023) Learnable Input ($\mathcal{X}_S$) / Hidden ($\mathcal{H}$) concatenation / parametric Rule-based (RA) CVPR
Explicit Visual Prompting for Low-Level Structure Segmentations Liu et al. (2023) Learnable Embedding ($\mathcal{E}$) / Hidden ($\mathcal{H}$) Parametric (PR) Identity (ID) CVPR
From English to More Languages: Parameter-Efficient Model Reprogramming for Cross-Lingual Speech Recognition YANG et al. (2023) Learnable Input ($\mathcal{X}_S$) / Hidden ($\mathcal{H}$) Additive (AD) Rule-based (RA) ICASSP
InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning Dai et al. (2023) Learnable Embedding ($\mathcal{E}$) Parametric (PR) Identity (ID) / rule / Linear (LA) NeurIPS
Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions TRIVEDI et al. (2023) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) ACL
Low-Resource Music Genre Classification with Cross-Modal Neural Model Reprogramming HUNG et al. (2023) Learnable Input ($\mathcal{X}_S$) Parametric (PR) Statistical (SA) ICASSP
MaPLe: Multi-modal Prompt Learning Khattak et al. (2023) Learnable Embedding ($\mathcal{E}$) / Hidden ($\mathcal{H}$) Concatenative (CO) Linear (LA) CVPR
Neural Model Reprogramming with Similarity Based Mapping for Low-Resource Spoken Command Recognition Yen et al. (2023) Learnable input-space Additive (AD) Statistical (SA) Interspeech
On the Role of Attention in Prompt-tuning OYMAK et al. (2023) Learnable Embedding ($\mathcal{E}$) / Hidden ($\mathcal{H}$) Concatenative (CO) Linear (LA) ICML
PLOT: Prompt Learning with Optimal Transport for Vision-Language Models CHEN et al. (2023) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) ICLR
Reprogramming Pretrained Language Models for Antibody Sequence Infilling MELNYK et al. (2023) Learnable Embedding ($\mathcal{E}$) Parametric (PR) Linear (LA) ICML
Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V YANG et al. (2023) Fixed Input ($\mathcal{X}_S$) Additive (AD) Rule-based (RA) arXiv
TransHP: Image Classification with Hierarchical Prompting WANG et al. (2023) Learnable Embedding ($\mathcal{E}$) / Hidden ($\mathcal{H}$) Concatenative (CO) Linear (LA) NeurIPS
Tuning Multi-mode Token-level Prompt Alignment across Modalities WANG et al. (2023) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) NeurIPS 2023
Understanding and Improving Visual Prompting: A Label-Mapping Perspective CHEN et al. (2023) Learnable Input ($\mathcal{X}_S$) Additive (AD) Statistical (SA) CVPR
Universal Prompt Tuning for Graph Neural Networks FANG et al. (2023) Learnable Input ($\mathcal{X}_S$) Additive (AD) Linear (LA) NeurIPS
Visual Instruction Tuning LIU et al. (2023) Learnable Embedding ($\mathcal{E}$) concatenation / parametric Identity (ID) NeurIPS
What Does a Platypus Look Like? Generating Customized Prompts for Zero-Shot Image Classification PRATT et al. (2023) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) ICCV
What Makes Good Examples for Visual In-Context Learning? ZHANG et al. (2023) Fixed Input ($\mathcal{X}_S$) Concatenative (CO) Identity (ID) arXiv
ArGue: Attribute-Guided Prompt Tuning for Vision-Language Models TIAN et al. (2024) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) CVPR
AutoVP: An Automated Visual Prompting Framework and Benchmark TSAO et al. (2024) Learnable Input ($\mathcal{X}_S$) Concatenative (CO) Statistical (SA) / Linear (LA) ICLR
Bayesian-guided Label Mapping for Visual Reprogramming CAI et al. (2024) Learnable input-space Additive (AD) Statistical (SA) NeurIPS
Exploring the Transferability of Visual Prompting for Multimodal Large Language Models Zhang et al. (2024) Learnable Input ($\mathcal{X}_S$) Additive (AD) Statistical (SA) CVPR
Joint Visual and Text Prompting for Improved Object-Centric Perception with Multimodal Large Language Models Jiang et al. (2024) Fixed Input ($\mathcal{X}_S$) / Embedding ($\mathcal{E}$) addition / concatenation Identity (ID) arXiv
Model Reprogramming Outperforms Fine-tuning on Out-of-distribution Data in Text-Image Encoders GENG et al. (2024) Learnable Input ($\mathcal{X}_S$) / Embedding ($\mathcal{E}$) addition / parametric Identity (ID) SatML
PIVOT: Iterative Visual Prompting Elicits Actionable Knowledge for VLMs NASIRIANY et al. (2024) Fixed Input ($\mathcal{X}_S$) Additive (AD) Rule-based (RA) ICML
PromptKD: Unsupervised Prompt Distillation for Vision-Language Models LI et al. (2024) Learnable Embedding ($\mathcal{E}$) Concatenative (CO) Identity (ID) CVPR
Sample-specific Masks for Visual Reprogramming-based Prompting Cai et al. (2024) Learnable Input ($\mathcal{X}_S$) Additive (AD) Statistical (SA) ICML
Time-LLM: Time Series Forecasting by Reprogramming Large Language Models JIN et al. (2024) Learnable Embedding ($\mathcal{E}$) Parametric (PR) Linear (LA) ICLR
When Do Prompting and Prefix-Tuning Work? A Theory of Capabilities and Limitations PETROV et al. (2024) Learnable / Fixed Input ($\mathcal{X}_S$) / Embedding ($\mathcal{E}$) / Hidden ($\mathcal{H}$) Concatenative (CO) Identity (ID) ICLR
Attribute-based Visual Reprogramming for Vision-Language Models Cai et al. (2025) Learnable Input ($\mathcal{X}_S$) addition / concatenation Rule-based (RA) ICLR
Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want Lin et al. (2025) Learnable embedding-level Parametric (PR) Linear (LA) ICLR
Model Reprogramming Demystified: A Neural Tangent Kernel Perspective Chung et al. (2025) Learnable input-layers Additive (AD) Identity (ID) arXiv
Refine: Inversion-free backdoor defense via model reprogramming Chen et al. (2025) Learnable input-layers Additive (AD) Identity (ID) ICLR
Reprogramming pretrained language models for protein sequence representation learning Vinod et al. (2025) Learnable input-layers Additive (AD) Identity (ID) Digital Discovery
Understanding Model Reprogramming for CLIP via Decoupling Visual Prompts CAI et al. (2025) Learnable Input ($\mathcal{X}_S$) Additive (AD) Linear (LA) ICML